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ELASTIC STRESS DISTRIBUTION IN A FINITE-WIDTH
ORTHOTROPIC PLATE CONTAINING A CRACK
By Alexander Mendelson and Samuel W. Spero

Lewis Research Center

SUMMARY

A method is presented for obtaining directly the elastic stress distribu-
tion in a thin, finite-width orthotropic plate with a central crack. The solu-~
tion, which was obtained by the use of finite Fourier transforms, involves the
solving of an integral equation for the crack opening; the stresses can then be
computed by simple guadrature. The sclution is valid as long as the plate
width is at least twice the crack length. It is shown that the stress inten-
sity factor is independent of the orthotropy of the material.

INTRODUCTION

The elastic distribution of stresses and strains around a crack in a fi-
nite or an infinite medium is a problem basic to the expanding field of frac-
ture mechanics. The solution for the isotropic infinite plate has been ob-
tained by several methods and is well known. The solution for an isotropic fi-
nite plate with a central crack has only been obtained approximately (ref. 1)
by using Westergmard's semi-inverse solution for colinear cracks (ref. 2). The
problem of the orthotropic infinite plate has been solved both for tension and
for bending (ref. 3).

The present report presents a direct solution for an orthotropic finite-
width plate with a central crack under tension. The solution is not exact in
that the normal stress distribution on the free sides of the plate is not zero,
although the resultant of this stress distribution is zero. It is shown that
for the case of isotropy the solution agrees with that given by Westergaard's
semi-inverse method for colinear cracks. In the limiting case, as the ratio of
crack length to plate width approaches zero, the solution approaches the one
for the infinite plate.

In the first part of this report the equations for the stress and
strain distributions in an orthotropic plate are presented together with a dis-
cussion of their validity and limitations. In appendix A, this solution is
derived in detail, in a purely formal manner, by using finite Fourier trans-
forms.



SOLUTION

Consider a thin orthotropic plate 2 units in width with a central crack of
length 2a, along the x-axis, loaded with a uniform tensile load P per unit

1.0

Ratio of crack displacements, vix,0)/v{0,0)

N
| et

0 2 .4 .6 .8 1.0
Distance along crack, x/a

Figure 1. - Variation of crack opening with distance along

crack for crack half-lengths from 0.001 to 0.5.
width at y equal to infinity, as shown in the sketch in figure 1. It is
shown in appendix A that a formal solution for the stresses can be obtained in
the following form:

a
2
Sy(x,y) 1+ BT{-(_l ,/o‘ v(v,O)[Il(x,y,v) - BIl(x,%,v)]dv

. i
Sx7) =~ _/O' v(v,0) LIl(x,g-,v) -s:cl(x,y,v)]av -

25 &
Sxy(x,¥) = - BTI [ v(v,0)

where Sy, Sy, and Sxy are the stresses, which have been made dimensionless

I

LIz(x,%r-,v) - Iz(x,y,v)]dv J




in terms of the load, v(v,0) is the displacement of the crack (i.e., crack
opening) divided by the ratio of the load to the elastic modulus in the V-
direction, and

E
B2 - ¥ -y (2)
is the orthotropy parameter. The moduli and the Poisson ratios in the y- and

x~-directions are Ey, By Hys and .

The functions I, and I, are given by

(v - x)cosh = % -1

J’cos (v + x)cosh n % -1

. 1 cos
Il(x:g"’) =7 7 ¥ 2
[}os n(v + x) - cosh x %] [%os (v - x) - cosh = g]
g B B .

(3)

(
sin (v + x)sinh = % sin n(v - x)sinh x %

2 - 2
LE:os w(v + x) - cosh x %] [%os (v - x) - cosh =« %]

-/

and the crack opening +v(x,0) is given by the solution of the integral equation

v(x,0) = 228 w(x) 4+ /O 7(n,0)K(x, ) (4)

where

T

00
- Lz sin mrwa cos mmx (5b)
e m
1

o

zz (1B ™ + )
-2 (nx-1) - 2 (a+n)|in(a v 0) - &n?nzz’fl)l

m=. .

1
F(x) = 2 / 1n[2(cos nx - cos =7)ldn (53)
a

[}

i 2m

(-l)mBzmﬂzm(a - x)
2m{(2m + 1)1

m=1 J

(5¢c)

—%(a-x)ln(a-x)-{-




and

K(x,n) = a + - sin ma - — ln[% sin % (a + x)sin g-(a _‘Xﬂ
21 sin 5 (a + n)sin 5 (a, - 'q)

I

] sin s . sin 3 (a + 1)
N X S

2r sin = (x + n)sin 5 (x - n) sin = (a - n)
1

sin = (a + x)

N Sl (e
2x sin 3 (x + n)sin 3 (x - 1) sin (a - x)

The procedure for obtaining the stress distribution is then to first solve
equation (4) for the crack opening v(x,0). This is a Fredholm integral equa-
tion of the second kind that can be solved by any standard method. A numerical
successive approximation technique is used herein. Although the kernel is sin-
gular at n = a, the singularity can readily be cancelled out, and the princi-
pal value obtained as shown in appendix B. The kernel is not singular at
x = 1. The function F(x) is a known function and can be computed by any of
equations (5). The series in equation (5c) are very rapidly convergent for
small a. The By, are the Bernoulli numbers 1/6, -1/50, 1/42, and so forth.

Once the solution for +v(x,0) has been obtained, the complete stress field

can be computed by simple quadrature with equations (1). For an isotropic
plate B = 1, equations (1) become, after a limiting process,

> 31,
Sy(x,y) =1 - = v(v,0) (I - 5 V)& (7a)

0
? 3T,
Sy(x,y) = - v(v,0){1q + S5 Y av (7b)
0
& 3T
Sy (%,¥) = ¥ / v(v,0) 5= (7e)
0

Equation (7c) can also be written as
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a
Syy = 7Y v(v,0) = v (8)
0
In equations (7) and (8) I, and I, are evaluated with B set equal to 1.

Isotropic Plate

Figure 1 shows the solution of equation (4) for an isotropic material.
The ratio of crack opening to maximum crack opening as obtained by a successive
approximation solution of equa-
L2 o, tion (4) has been plotted against
————— Infinite plate the ratio of the distance along
inite-width plate .
o Westergaard's solution the crack to the crack length.
T v This has been done for various ra-
v tios of crack length to plate
width a, and the results all fall
r~ on the quadrant of the circle
shown in figure 1. This indicates
that the shape of the crack re-
L= mains elliptic at least up to
.4 rd values of a equal to 0.5. The
//‘ ratio of minor to major axes in-
/// creagses as8 & Iincreases, but this
'Zj/ increase is only 12.5 percent in
/ going from a =0 to a = 0.5.
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Figure 2. - Variation of stress intensity factor with crack length.

After the crack opening
v(x,0) is computed, the stresses
were easily calculated from equa-
tions (7). Figure 2 shows the
stress intensity factor as obtained in this way. The stress intensity factor
1s defined by

k = lim|+/2(x - &) Sy(x,O)J (9)

For an infinite-width plate this limit becomes q/g and is shown as the dashed
curve in figure 2. The solid curve of figure 2 was obtained for a finite plate
2 units wide by using equations (7).

Orthotropic Plate

Some useful results for the orthotropic plate can be obtained directly
from the results for the isotropic plate. Examination of equation (4) shows
immediately that the crack opening v(x,0) for an orthotropic plate differs
from the crack opening of the isotropic plate by a numerical factor; that 1is,



1
V(X)o)orth = -2'. B V(x)o)iso (lO)

Figure 1 is therefore also valid for the orthotropic plate. Furthermore,
making use of this result in equations (1) shows that at y = O

Sy(x’o)orth = Sy(X:O)iso

1 (11)
Sx(x,0)optn = B Sy(x»’o)iso
It follows from equations (11) that
Korth = ¥iso (12)

that is, the stress intensity factor is independent of the orthotropy of the
material (see ref. 3).

Limitations of Solution

The desired solution for the stress distribution around a crack in a
finite-width orthotropic plate under simple tension must satisfy the following

equations:

Equilibrium:

oS os

X X,

g + —yy =0 (138.)

oS oS

St = O (13b)
Compatibility:

d%e de d%e
L+ X <L (14)

Stresgss-strain relations:

e, = BZSX - Sy (15a)
ey = Sy - WySy (15b)
2
exy = 2(%_%_9_ + py)sxy (15¢)

The strains appearing in equations (14) and (15) are the actual strains divided
by the ratio of the load P +to the modulus in the y-direction Ey.
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Boundary conditions:

Sy(x,w) =1 N
Sx(x:m) = Sxy(x:w) =0
Sy(x,0) =0 0<x<a
v(x,0) =0 a<x<1l f (16)
SXy(X,O) = Sxy(l:Y) = Sx(l;Y) =0
oS (O:Y) os (O:y)
Bey(05¥) =~V — = —— =0

Because of symmetry only one quadrant of the plate is considered. When the
stress-strain relations of equations (15) are substituted into equation (14)
and equations (13) are used, the compatibility equation is obtained in terms of
stresses:

2 (3%, % ofs, s
1+B x L)+ p2 X+ L -0 (17)
a ox? dy? dy? x?

It can be shown by direct differentiation that the functions Il(x,%,v) and
Iz(x,%,v) satisfy the Cauchy-Riemann equations

oIq oI,
5 - ox  o(y/B)
] i (18)
AR 4 BIl 512
x SG78Y T T &
> 3\ .
S The solution given by equations (1)
g 7 then satisfies equations (13) and
3 2 (17) identically.
§ . \ When the boundary conditions
g - \ given by equations (16) are consid-
= \ ered, it can be shown that equa-
£E ¢ - tions (1) satisfy all these condi=-
= \ e tions but one. The condition that
. N A/// the normal stress S,(1,y) on the
” ~ free surface x = 1 be zero is not
satisfied. Instead, a normal stress
-2 distribution such as that shown in
0 .5 1.0 1.5 2.0 2.5 3.0 £1 . . .
Distance from x-axis, y igure 3 for an isotropic plate with
Figure 3. - Normal stress distribution on the surface x = 1.0, a = 0.5 is obtained. The resultant
a=0.5. stress, however, vanishes, as can be



shown by integration. By Saint-Venant's principle it would seem that the error
in neglecting the effect of this normal stress distribution on the stress field
in the vicinity of the crack should not be large, if the ratio of crack length
to plate width is less than 1/2. This error, of course, decreases as a de-
creases. This is in agreement with the conclusion of reference 1.

The existence of the normal stress distribution Sx(l,y) arises from the
fact that solution (1) implies a constant normal displacement u(l,y) at this
surface. This is shown in appendix A in the derivation of equations (1). The
normal stress distribution on this surface is the one required to keep this
boundary straight. It follows, therefore, that solution (1) should be the same
as the solution for an infinite set of colinear cracks. For such a set, the
plane midway between two cracks suffers nco displacement, so the solution pre-
sented satisfies all the necessary boundary conditions.

For an infinite set of colinear cracks there i1s available a solution for
an isotropic plate in terms of complex potentials obtained by Westergaard's
semi-inverse method (ref. 2). The values obtained for the stress intensity
factor by using Westergaard's equations are shown by the circles in figure 2.
The agreement with the present solution is excellent, as would be expected. It
was also found that the crack opening as obtained from Westergaard's equations
satisfies equation (4). Westergaard's solution is, of course, not valid for an

orthotropic plate.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 10, 1963



APPENDIX A

DERIVATION

The solution equations (1) can be obtained in a formal manner by the
use of finite Fourier transforms. When a Fourier sine transform is performed
on equation (13a) and Fourier cosine transforms on equations (13b) and (17),
there result the following three equations for the transformed stresses:

as
_XY,s _ _ W
ay m:r(Sx’C 0
dy XYy,58
2 2
2 [a°s acs 3
1+8 ;C 2.2 2 X,C 2_2 _ m Sy
2 z T Sx,c) * B 5 - Sy o = -(-1)7 35
dy dy x=1 _J

where some of the conditions of equations (16) have been used and the trans-
formed stresses are defined by

1
Sxy’s(m:y) = '/O‘ Sxy sin mnx dx w
> (a2)

1
SX,C(m,y) = -/o‘ Sy cos mmx dx, etc.

J

Equations (Al) are ordinary differential equations for the transformed stresses,
and their solutions can be written in terms of exponentials:

- - 3
Sy,c = Ap® nry/B 4 Bpe Y + Sp(m,y)
2
a=s
1 j o-mry/B -y | L P
S =-—Ace - B e - —_— (A3)
X,C a2 Ap Bp mPn? aye &
as
_ L p mny/B -mxy _ 1 P
Sxy,s = B Age + Bpe mr dy J
where Sp(m,y) is a particular solution as yet unkunown and A, and are

constants to be determined. The general solution of equations (Al) actually
contains terms with positive exponentials as well, but these must vanish if the
stresses are to remain finite as <y approaches infinity.



Teking the inverse transform (ref. 4) results in

o0
Sy,c(0,y) + 2 Z Sy,c cOS mrx
m=1

Sy(X:Y)

2]
Sx(x,y) = SX,C(O,y) + 2 Z Sx,c COS mmux
m=1

[><]

Sxy(x,y) = 2 Z Syy,s sin mmx
m=1

From equation (A4a) it follows that

x=1

(A42)

(A4b)

(A4e)

and consequently that Sp 1s identically zero. It can also be shown that in
order to satisfy the compatibility equation (eq. (17)) and the condition of
zero Sy at infinity, SX,C(O,y) must vanish. Substituting equations (A3) into

equations (A4) and making use of the condition

1
0

result in

Sy(x,y) =1+2 z (Ame"m’W/l3 + Bme"m“y) cos mnx

m=1
- § 1, -mry/B -ty
Se(x,y) = -2 <——2 Ape + Bpe )cos myx
B
m=1
S, o(x,y) = 2 1 -mxy /B -mrty o 4
xy (X,¥) = 5 Ane + Bpe sin mnx
m=1

The condition Sxy(x,o) = 0 will be satisfied 1f it is assumed that

10

k

.)

(A5)

(46)



el o]

Ap + By =0 (A7)
Equations (A6) then become

~

Sy(X;Y) =1 + 2 E Am(e'm’W/B - % e'mﬁy)cos mnx

m=1

Sx(x,y) = -2 E g% (e'm’ty/B - Be'm“y)cos mx > (A8)

m=1

Sxy(x,y) = 2 %? (e-mny/B - e'mﬁy>sin max

m=1

It should be noted that equations (A8) could also have been obtained by
assuming for the stresses Fourier series whose coefficients are functions of ¥y
and then determining these functions by substituting into the equilibrium and
the compatibility equations.

To obtain the displacements, a Fourier cosine transform is performed on
equation (15a), while a Fourier sine transform is performed on equation (15c).
After some algebraic manipulation, making use of equations (A3) and (A7) and
then taking the inverse transforms, there result

l 2]
v(x,y) = v(x,y)ax - g' 3%_[(52 + “y)e—mﬂy/ﬁ - (1 + uy)e'm“y]cos max
0 m=1
(A9a)
u(x,y) = -2 ﬁE (1 + py) -my /B + Y )e-mry i -
»Y) = o Hy)e -|B B e sin msx HyX
m=1
(A9D)
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where equation (15a) has been used to determine u(l,y) = ~{y+  From equation
(A9b) it follows that the solution implies a uniform normal displacement ~Hy
at the edge of the plate.

The coefficients A, can now be determined from the conditions at y = O.
Thus, at y =0,

[ve]

Sy(x,0) =1 + ZZAm(l - %‘—)cos mmx (A10a)

m=1

a,

2
v(x,0) = v(x,0)dx + 2 J'B-—B E i-;;l cos mux (A10D)

0] m=1

where the condition v{(x,0) = 0, a < x < 1, has been used. Equations (Al0O) are
merely Fourier series, and it consequently follows that

Am( - %) = [1 8,(¢,0)cos mrt at (Alla)

2 a
1-p°"n = / v(v,0)cos mry dv (AllDb)
B mn A

where the conditions Sy(x,O) =0, 0<x<a, and v(x,0) =0, a <x<1, have
been used.

Substituting equation (Alla) into equation (A10b) and equation (Allb) into
equation (Al0Oa) yields (after orders of summation and integration are reversed)

a

00
Sy(C:O) =1 - l—-_%—B— v(v,0) E mx cos myxy cos mxf]dv (A12a)

0 m=1

a 1 .
1
v(x,0) = v(x,0)dx ~ 2(1 + B) Sy(C,O) E — cos mn¢ cos mmx|dt
0 a m=1

(A12p)

12
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The divergent series appearing in equations (Al2) can be formally summed
(ref. 5):

ﬁ
o]
1 - cos nv cos nf
mx cos muy cos muf = - = >
(cos v - cos =)
m=1
? (A13)
o
§ 1l _ 1 2
— cos mrf cos mmx = - o log[%(cos xx - cos w{) ]
m=1 J

If equations (Al3) are substituted into equations (Al2) and equation
(Al2a) is substituted into equation (Al2b), after the order of integration is
reversed and one integration is performed, the integral equation (4) is ob-
tained. To obtain the stresses (egs. (1)), equation (Allb) is substituted into
equations (A8) and the resultant series summed, as was done previously, after
the order of summation and integration is reversed. The correctness of the
solution can be determined by substituting back into the equilibrium and the

compatibility equations.
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APPENDIX B

EVALUATION OF SINGULAR INTEGRAL

The integral in equation (4) is singular at n = a since the kernel is
unbounded at this point. . Since the kernel K(x,n) goes to infinity as l/e
and the displacement v(n,O) goes to zero as el 2, the integral has a square
root singularity at n = a. The principal value can be calculated as follows.
Equation (4) can be written as

a

v0,0) = 23Lre) + f " v(n,00(x, man + S vtnomtoman

a-€

(B1)
wvhere € 1is a small positive number. The first integral is nonsingular and

can be evaluated without difficulty. The second integral, which for conven-
ience will be designated by J, can be written as

& a
J = V(T];O)K(X,n) - C f(X’a) dn + C f(X,a) d’q
(a2 _ 2)1/2 ( 2 2)1/2
a-€ 1 A R
(B2)
where
. 2 2
f(X;a) = ln_m[(a -1 )K(XJT])]
T8

28, . a + X . a - X

= ;E ln<; sin = > sin = > ) (B3)

and C is a constant. The integrand of the first integral in (BZ) is now
bounded at 1 = a, and the second integral can be readily evaluated. Thus,

a o\1/2
£(x,8) g =28 (; in 0 2L % gin x 22 T)s‘n‘l ze _ €
= —= 1N sin 1t sin i 1 —_——-
(az 2)1/2 "= 2 2 a oo
-0
a-€

(B4)

Since v(n,0) i1s elliptic in the neighborhood of a, the first integral in
equation {B2) can be written with negligible error as

14
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a
¢ =/ a? - nZ [K(x,n) - f—é—’ia;)z]dn
a® - n

a-€

and the condition of continuity for v at 17 =a - € leads to

C = v(a - €,0) (B5)
Vaae - e?

The equation for J becomes
a
A >\1/2
f{x,a . € €
J =2C Vaz Y [K(x,n) - aiz—f—%é-]dn + f(x,a)sin~L = - -—2->
a-¢

(B6)

where f(x,a) is given by equation (B3) and C Dby equation (BS). For the cal-
culations performed herein, ¢ was always chosen to be a/lOO.

15
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